Delayed afterdepolarizations generate both triggers and a vulnerable substrate promoting reentry in cardiac tissue.
نویسندگان
چکیده
BACKGROUND Delayed afterdepolarizations (DADs) have been well characterized as arrhythmia triggers, but their role in generating a tissue substrate vulnerable to reentry is not well understood. OBJECTIVE The purpose of this study was to test the hypothesis that random DADs can self-organize to generate both an arrhythmia trigger and a vulnerable substrate simultaneously in cardiac tissue as a result of gap junction coupling. METHODS Computer simulations in 1-dimensional cable and 2-dimensional tissue models were performed. The cellular DAD amplitude was varied by changing the strength of sarcoplasmic reticulum calcium release. Random DAD latency and amplitude in different cells were simulated using gaussian distributions. RESULTS Depending on the strength of spontaneous sarcoplasmic reticulum calcium release and other conditions, random DADs in cardiac tissue resulted in the following behaviors: (1) triggered activity (TA); (2) a vulnerable tissue substrate causing unidirectional conduction block and reentry by inactivating sodium channels; (3) both triggers and a vulnerable substrate simultaneously by generating TA in regions next to regions with subthreshold DADs susceptible to unidirectional conduction block and reentry. The probability of the latter 2 behaviors was enhanced by reduced sodium channel availability, reduced gap junction coupling, increased tissue heterogeneity, and less synchronous DAD latency. CONCLUSION DADs can self-organize in tissue to generate arrhythmia triggers, a vulnerable tissue substrate, and both simultaneously. Reduced sodium channel availability and gap junction coupling potentiate this mechanism of arrhythmias, which are relevant to a variety of heart disease conditions.
منابع مشابه
Reperfusion arrhythmias in isolated perfused pig hearts. Inhomogeneities in extracellular potassium, ST and TQ potentials, and transmembrane action potentials.
We recorded direct current electrograms and local [K+]o at multiple sites and transmembrane potentials at selected sites during reperfusion after 5 minutes and 10 minutes of regional ischemia in isolated perfused pig hearts. After 10 minutes of ischemia, the incidence of ventricular fibrillation (VF) was 38%. At 80-90 seconds after reperfusion, [K+]o was 0.8 mM less than in normal tissue in hal...
متن کاملSynchronization of early afterdepolarizations and arrhythmogenesis in heterogeneous cardiac tissue models.
Early afterdepolarizations (EADs) are linked to both triggered arrhythmias and reentrant arrhythmias by causing premature ventricular complexes (PVCs), focal excitations, or heterogeneous tissue substrates for reentry formation. However, a critical number of cells that synchronously exhibit EADs are needed to result in arrhythmia triggers and substrates in tissue. In this study, we use mathemat...
متن کاملComputational Cardiac Modeling Reveals Mechanisms of Ventricular Arrhythmogenesis in Long QT Syndrome Type 8: CACNA1C R858H Mutation Linked to Ventricular Fibrillation
Functional analysis of the L-type calcium channel has shown that the CACNA1C R858H mutation associated with severe QT interval prolongation may lead to ventricular fibrillation (VF). This study investigated multiple potential mechanisms by which the CACNA1C R858H mutation facilitates and perpetuates VF. The Ten Tusscher-Panfilov (TP06) human ventricular cell models incorporating the experimenta...
متن کاملEarly afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve
AIMS Acute ischemia is a major cause of sudden arrhythmic death, further promoted by potassium current blockers. Macro-reentry around the ischemic region and early afterdepolarizations (EADs) caused by electrotonic current have been suggested as potential mechanisms in animal and isolated cell studies. However, ventricular and human-specific arrhythmia mechanisms and their modulation by repolar...
متن کامل1 3-dimensional simulation of long QT syndrome: early afterdepolarizations and reentry
Early afterdepolarizations (EADs), thought to be highly arrhythmogenic in the case of long QT (LQT) syndromes, are most readily observed at slow heart rates and suppressed by fast heart rates. However, EADs are thought to contribute to tachycardia-dependent arrhythmias such as Torsades des pointes and ventricular fibrillation, leading to sudden cardiac death. Recent studies of simulated LQT in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Heart rhythm
دوره 12 10 شماره
صفحات -
تاریخ انتشار 2015